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An Optimal Control Model for Determining Articular 
Contact Forces at the Human Knee During Rising from a 

Static Squat Position 

Seonpil Kim* and Marcus G. Pandy** 
(Received November 24, /997) 

A two-dimensional dynamic model of the knee joint was incorporated into a four-segment, 

eight>muscle model of the human body to determine the muscle, ligament, and articular contact 

forces transmitted at the knee as humans stand up from a static squatting position. Our optimal 

control model predicted peak tibiofemoral contact forces 8 times as high as body weight. 

Furthermore, ligament forces, especially those in the anterior-cruciate, were nearly body weight 

as knee flexion approached 90 degrees. Ligament and tibiofemoral contact loads were dominat- 

ed by the forces exerted by muscles during the movement. 

Key Words: Knee Modeling, Optimal Control, Musculoskeletal Dynamics 

1. Introduction 

The knee is the largest and one of the most 

complex joints in the body. The intricate arrange- 

ment of articulating bones, constraining liga- 

ments, and actuating muscles provides for a sub- 

stantial range of flexibility and loading patterns. 

However, the knee is also one of the most fre- 

quently injured and surgically repaired joints in 

the body One of the most common types of knee 

injuries involves failure of the ligamentous struc- 

tures which provide stability of the tibia on the 

femur. Failure of these structures is thought to be 

partially compensated for by changes in muscular 

coordination during locomotor activities. How- 

ever, if left uncorrected subsequent damage is 

likely to occur in the articulating surfaces and soft 

tissues in and around the joint. 

Knowledge of the forces transmitted by mus- 

cles, ligaments, and the articular surfaces at the 

knee is fundamental for understanding the 

mechanics of the normal knee and for improving 
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the diagnosis of patients with movement disabil- 

ities resuhing fi'om knee injury. Unfi)rlunately, 

muscle, ligament, and joint contact forces cannot 

be measured non-invasively.  Furthermore.  

because the ligaments and number of  muscles 

form a structurally indeterminate system, straight- 

[brward methods employing force and moment 

equilibrium cannot be used to determine the 

forces in these structures. A potentially powerful 

melhod for determining muscle foroes during 

movement is the combination of musculoskeletal 

modeling and optimal control theory. ]-he power 

of an optimal control approach derives from the 

scope of the modeling: not only does optimal 

control theory take into account muscalotendon 

dynamics (i. e., muscle's force-lenglh velocity- 

activation property), but it also delivers a purely 

predictive result independent of experirnent. 

Though numerous attempts have been made to 

develop two- and three-dimensional models of 

the human knee joint (Andriacchi et al., 1983; 

Blankevoort, 1991: Cheng, 1988; Collins and O' 

Connor. 1991; [:ijan, 1990; Morrison, t970; 

Wismans el al., 1980: Yamaguchi arid Zajac, 

1989), no one has combined a dynamical lnodel 

of the knee with an optimal control approach to 

determine the forces transmitted at the knee dur- 
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ing movement .  A b d e l - R a h m a n  and Hefzy 

(1993), Moeinzadeh et a[. (1983), and Wong 

chaisuwat  e t a [ .  (1984) have developed two 

dimensional  dynamical  models of  the knee joint ,  

but all of  these neglect lhe effects of  musculoten- 

don dynamics.  Andriaccbi  el al. (1983), Blan- 

kevoort  (1991), Fijan (1990), and Wismans et al. 

(1980) have developed more complex three 

dimensional  models of  the knee, but these are 

either static or  quasi-stat ic,  and they all neglect 

the effects of  muscle dynamics.  

We have developed a two-d imens iona l  dynami-  

cal model  of  the human knee joint  to study the 

mechanics of  the normal  knee during movement.  

The  knee is represented as a two degree of--free- 

dom planar joint ,  which includes the interactions 

of  the femur, tibia, patella, and ligaments. By 

incorporat ing the planar knee model into an 

existing musculoskeletal  model  of  the human 

body, we then used opt imal  control  theory to 

determine the muscle, ligament, and art icular  

contact  forces transmitted at the knee as humans 

stand up from a static squatt ing position. 

2. Planar Knee Model 

We modeled the knee as a planar jo in t  compris-  

ing the tibia, femur, patella, and ligaments (see 

Fig. 1). Elliptical curves were used to represent 

the shape of  the distal femur in the sagittal plane. 

A straight line s loping 8 degrees below the nor- 

mal to the tibial axis was used to represent the 

weight -bear ing  surface of  the tibial plateau 

(Nisell, 1985; Yamaguchi  and Zajac,  1989). For  

mot ion in the sagittal plane, the patella was 

represented as a rectangle. To  model  the patella as 

a spacer and a lever, we assumed that a single 

point of  contact  exists between the femoral con- 

dyles and the rectangular  patel[a, and that the 

length of  the patelta l igament remains constant 

(Yamaguchi  and Zajac,  1989). Because the mass 

of  the patella is small in compar ison with that of  

the femur and tibia, we assumed the patella to be 

massless so that its mot ion can be determined 

purely from the condi t ions  of  static equi l ibr ium 

(see below).  Also, since we are interested in 

normal knee mechanics as it relates to whole 

Fig. 1 Schematic of the two dimensional model of 
the human knee joint. Elliptical carves were 
used to represent the shapes of the femoral 
condyles in the sagittal plane. A straight line 

with slope ~ 8 ~ was used to represent the 
weight bearing surface of the tibial pIateau. 
The patella was represented as a rectangle, c~ 
is the orientation of the patella with respect 

to the vertical, ,~ is the orientation of the 
patellar ligament with respect to the vertical, 

Fq and 0q are the magnitude and direction of 
the applied quadriceps force, x,, y~, and 0k 
are the generalized coordinates defining the 
position of the lemur relative to the tibia, (xy, 

y f) represents the reference frame attached to 
the lemur, (x~, y~) represents the tibial refer- 
ence frame, F,. is the patellofemoral force, r 
and 7 define the location of the tibiofemoral 
contact point with respect to the tibial refer- 
ence frame, and mm and *u~; are the moment 
arms of the patellar tendon and the qua- 
driceps, respectively, 

-body  movement,  we neglected the effects of  

articular cart i lage and the menisci. 

2.1 Ligament properties 
We included the action of  the anterior and 

posterior cruciate ligaments and the medial and 

lateral-col lateral  l igaments in the planar knee 

model. The origin and insertion sites of  each 

ligament were obtained from data reported by 

Garg (1990) and Moeinzadeh et al. (1983). Each 
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ligament was modeled as a separate bundle of 

fibers, and its mechanical behavior was described 

by a nonlinear stress-strain curve (Blankevoort, 

1991). Since no experimental data exist for liga- 

ment slack lengths, we placed the knee in full 

extension and adjusted slack lengths until the 

strain in the anterior cruciate and lateral collat- 

eral ligaments was 5 percent, and that in the 

posterior-cruciate and medial-collateral  ligament 

was -I  percent and 5 percent, respectively 

(Wismans et al., 1980). 

2.2 Tibiofemoral  joint 
We modeled planar motion of  the knee using 

three generalized coordinates to describe flexion 

extension, anterior posterior translation, and 

compression-distraction of the femur relative to 

the tibia. Therefore, the unconstrained, planar 

model has 3 degrees of freedom described by the 

coordinates x;,  y;,, and qSk (Fig. I). If the femur 

slips and rotates on the tibia, only one holonomic 

constrai:nt is needed to specify knee motion. This 

kinematical constraint equation can be derived 

from the following two conditions: i) a geometric 

compatibil i ty condition which requires that the 

femoral condyles remain in contact with the tibial 

plateau ,during flexion-extension of the knee, and 

ii) a surface contact condition which necessitates 

that the femur and tibia do not penetrate each 

other. Thus, only two independent coordinates 

are needed to describe motion of the femur rela- 

tive to tn-e tibia. 

To derive the equations representing the com- 

patibility condition, the coordinates of 

the tibiofemoral contact point (xv, yp) must 

first be expressed in the femoral and tibial 

reference frames (see Fig. I). Thus, 

Xp (l COS y'~ 
(yp ) r  . . . . .  ([,sirl y/~emurl (1) 

and 

(xp) =(rcos ~ ~)t~b,~ (2) 
~)p/tlbia \ F sin 

where a and b are parameters representing the 

surface shape of the femoral condyles (i. e., the 

lengths of the major and minor axes of an 

ellipse), ~e is the angle of inclination of the tibial 

plateau with respect to the horizontal ( ~ = 8  ~ Fig. 

I) ,  7" is the angle to represent the tibiofemoral 

contact point, and r is the distance from the origin 

of the tibial reference frame to the tibiofemoral 

contact point (Fig. 1). Note that g is not the angle 

of the vector drawn from the origin of the femoral 

reference frame to the tibiofemoral contact point. 

The contact point of the femur on the tibia, 

written in terms of the 3 generalized coordinates 

(xk, Yh, fk) can be expressed as 

cos 7 

= \ s i n  q% cos ~ k / \ b  sin 

(,) 
\ yk! 

The surface contact condition is obtained by 

requiring the tangent vectors to the femur and 

tibia at the tibiofemoral contact point to remain 

collinear during knee flexion extension. Express- 

ing the tangent vector at the point of contact 

between the femur and tibia in the femoral and 

tibial reference frames, 

and 

( a s i n  ~,)f . . . .  (4) 
g J : : \ b  cos 

I 
g).=:( _ tan ~e)tibi a (5) 

the surface contact condition is found from 

& X (g/) t ,b ,a=0 (6) 

where the tangent vector of the point of contact 

on the femur is expressed in the tibial reference 

flame. Referring to Fig. l, Eq. (6) can be written 

explicitly as 

a s in  7 ( - - c o s  qS~ sin ~e - s in  qSk cos e) + b cos 

7( --sin qS, sin ~+cos 95, cos ~) =0 (7) 

Also, using Eqs. (2) and (3), the coordinates 

of the cDntact point between the femur and tibia 

can be written as 

�9 rs in~-(acosTsin%k+bsinTcosdpk)  
(8) 
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Equations (7) and (8) are the geometric com- 

patibility and surface contact conditions for 

motion of the femur on the tibia. Since the femur 

is assumed to rotate and slip on the tibia, our two 

dimensional model of the knee requires one 

holonomic constraint. The holonomic constraint 

equation can be derived by differentiating Eqs. 

(7) and (8) with respect to time. Thus, 

~[1 r ~U g/~2 (~ h 7 : 0  (9) 

and 

))Je UI2 };" + t ' ~ 7  + V:~qSk (1 I) 

Solving Eqs. (9)-.(11) for and allows these vari- 

ables to be eliminated from the above equations 

so that one holonomic constraint remains. Thus. 

gi 2 ~ + 3) k q ,r ~h ~ 0 (12) 

where g~ and s are functions of the location of 

the tibiofemoral contact point ( r  and 7) and of 

the three generalized coordinates defining the 

position and orientation of the femur relative to 

the tibia (xk, 3'/,, ()t~). Given the location of the 

tibiofemoral contact point and knee flexion angle, 

the variables ; ,  7, ,vj< and yk cain all be found 

using Eqs. (7) and (8). 

2.3 Patellofemoral joint 
To model the patella as a spacer and a lever, we 

assumed that a single point of contact exists 

between the femur and the patella. The patella 

was represented as a rectangle with length 3.94 cm 

and thickness 1.63 cm (Yamaguchi and Zajac, 

1989). Both the patella and the patellar ligament 

are assumed to be rigid and inextensible. In 

particular, if the length of the patella ligament is 

assumed to remain constant, then the parameters 

which define the geometry of the patellofemoral 

joint (a and b) can be calculated given the loca- 

tion of the tibiofemoral contact point and the 

angle of knee flexion (see Yamaguchi and Zajac, 

1989 for details). 

Under the assumptions that the patelht is 

massless, that the length of the patellar ligament is 

constant, and that friction between the patella and 

femur is negligible, the conditions for static equi- 

librium completely define the position of the 

patella for any given angle of knee flexion�9 Sum- 

ming the forces acting on the patella gives (see 

Fig. 1): 

s i n  a \ - c o s  p c o s  < - 

(]3) 

and summing moments about the patellofemoral 
contact point yields 

mt~l Fpl = mqF'q (14) 

where /~s is the applied force in the quadriceps, 

F,- is the force exerted on the patella at the 

patellofemoral joint, Fpl is the applied force in 

the patellar ligament, and rap1 and mq are the 

perpendicular distances from the line of action of 

the patellar ligament force and the quadriceps 

force to the patellofemoral contact point, respec- 

tively (Fig. 1). Note that c:, fl, 0~, and m/,~ in 

Eqs. (13)--(14) are all dependent�9 

Substituting Eq. (14) into Eq. (13) gives one 

constraint equation which defines the position of 

the patella: 

- m < , c o s  (a+fi)+m~icos (a G) 0 
(i5) 

All of the variables in Eq. (15) can be found by 

knowing the geometry of the patellofemoral joint, 

Specifically, we specified the position of the 

patella by solving a static optimization problem 

to determine the values of all the muscle forces 

and the location of the tibiofemoral contact force. 

Knowing the location of the tibiofemoral contact 

force, we then solved equation (15) iteratively to 

obtain values for a and b which specify the 

orientation of the patella and the patellar liga- 

ment, respectively (Fig. 1). Eq. (15) was solved 

by guessing a value for a and computing the 

values of all the other variables until both sides of 

the equation were satisfied identically. Finally, 

the patellar ligament force and the patellofemoral 

contact l\~rce were computed from 

pr,=: mq p (16) 
]'77 p I * q 

and 

sin (Oq + fl) 
F , -  G (17) 

cos ( a +  fl) 
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3. Muscu loske le ta l  Model  of the 
H u m a n  Body 

We modeled the human body as a tbur--seg- 

ment, articulated, planar  linkage actuated by 

eight muscles (Fig. 2). The metatarsals, ankle, 

and hip were all modeled as fiictionless revolute 

joints,  while the knee was represented as a three 

deg ree -o~ f r eedom,  p lanar  j o in t  with one 

holononnic constraint  (Fig. 1). Each muscle was 

modeled as a three-element,  lumped-parameter  

entity in series with tendon. The mechanical  

behavior of muscle was described by a Hil l - type 

Fig. 2 Schematic of the musculoskeletal model used 
to simulate rising from a static squatting 
position. The human body was modeled as a 
f3ur segment, planar linkage, actuated by 
eight musculotendinous units. Symbols 
appearing in the diagram are: iibialis anterior 
(TA), soleus (SOL), other uniarticular 
plantar flexors (OPF),  gastrocnemius 
(GAS), vasti (VAS), rectus femoris (RF), 
l~:amstrings (HAMS), and gluteus maximus 
(GMAX). 

contractile element which modeled its force 

length-velocity activation property, a series-elas- 

tic element which modeled its active stiffness, and 

a parallel-elast ic element which modeled its pas- 

sive stiffness. Tendon  was assumed to be elastic, 

and its properties were modeled by a linear stress 

-s t ra in  curve. The details of our musculotendon 

model are given in (Pandy el al., 1990). 

3.1 Museulotendinoskeletal dynamics 
The dynamical  equations of motion for the 

musculotendinoskeletal  system can be written as: 

A(q)/s_" -O(c ; )"~  [B(q)LL~-+C(q) 
+ DM (q) F M~ + S ( q, 6; ) [] (18) 

O (,q).(~ =::0 (19) 
/5Mr:_f~(q,,: q ,  p.,~r, a~); i = 1 , 8  (20) 

I '  d i = ( / L ' r i s e )  (/'t,--O'i) Zr (l/flail) !Zti 
- - ( a , -  a t o m ) - ( z t , - - a , ) u  ~, i : 1 ,  8 (21) 

where _q., ~ ,  ii are 6 • I vectors of body-segmen-  

tal displacements, velocities, and accelerations; O 

(q) is the 6 x I Jacob ian  of  the c o n s t r a i n e d  

dynamical  system; 2 is the vector of cons t ra in t  

forces acting on the skeleton (In our  model, it 

c o n t a i n s  o n l y  t he  f o r c e  e x e r t e d  at  t h e  

t ibiofemoral  jo in t . ) :  /vM~ is an 8 •  vector of 

musculo tendon actuator forces; zt~ is the input 

excitation given to the ith muscle in the: model; a~ 

is the level of activation in the ith muscle; r ~ ,  and 

rf~m are the rise and decay times for muscle activa- 

t ion. respectively; x~. y~. and q~ are the three 

generalized coordinates describing molion of the 

unconstained knee model (Fig. I); M(q)  is a 6 •  

8 moment  arm matrix formed by comput ing  the 

perpendicular  distance between each musculoten- 

don actuator and the joint  it spans; A(q)  is the 6 

•  system mass matrix: C ( q )  is a 6~:1 vector 

conta in ing  only gravitat ional  terms; B ( q )  (1" is a 

6 • I vector describing both Coriolis ;and centrifu- 

gal effects, where 6; ~ represents (?,2. for i =  I. 6; D 

is a 6 • 6 matrix which transforms jo in t  forces and 

torques into segmental forces and torques; and S 

(q, ~;,) is a 67<1 vector of external jo in t  torques 

applied to the body. S ( q ,  2t) contains only the 

torque applied at the toes to keep the foot flat on 

the ground dur ing the squa t - to -s tand  naovernent. 

Note that gqs. (18) and (19) together describe 
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the dynamics of the constrained skeletal system. 
Equation (18) describes the dynamics of the 
unconstrained, six degree-of-freedom skeleton, 
whereas Eq. (19) specifies the holonomic con- 
straint which describes rotation and slipping of  
the femur on the tibia (see below). 

3.2 Dynamics of constrained skeletal system 
We used the constraint embedding method 

described by Kane (1961) to incorporate the 
holonomic constraint for knee motion (Eq. (19)) 
into the unconstrained dynamical equations of 
motion for the skeletal system (Eq. (18)). The 
Jacobian matrix for the constrained skeletal sys- 
tem, Q(q), can be found using the holonomic 
constraint defined by Eq. (12). Thus, 

O(q)  = [ 0  0 gz 0 gl 1] (22) 

By definition, the orthogonal complement of Q 
(q) is a matrix T(q) given by 

T ( q )  Q ( q ) T  0 (23) 

where in our model T(q) is a 5 x 6  matrix. If the 
equations of motion for the unconstrained 
skeletal system are premultiplied by T(q),  Eq. 
(18) reduces to 

T (q) A (q) 0 "= T (q) [B (q) q_-2+ C (q) 
+DM(q) F Mr+S(q, (t)] 

(24) 

Also, differentiating the holonomic constraint for 
knee motion (Eq. (19)) with respect to time gives 
an equation of the form 

O(q) 4 - OO(q) (t 4 (25) aq 

Equations (24) and (25) represent the dynamical 
equations for the constrained skeletal system, and 
can be solved for the vector of body-segmental 
accelerations at any instant in time. Specifically, 
embedding the holonomic constraint (Eq. (25)) 
into the unconstained dynamical equations of 
motion (Eq. (26)), we get 

O . = ( r ( q ) A ( q ) ~  r 

O(q) / 

( T(q)[B(q)o-2+C(q)+DM(q)FMr+S(q'O,])3Q (q) 4 4 

~?q -- 

(26) 

Equation (26) describes the dynamics of the 
constrained skeletal system. Note that q is a 6 • 1 
vector comprising the generalized coordinates 0 j, 

Oa, Oh, x~, yl~, and qSk, where 0/, 0a, and Oh 
represent the angle of the foot, ankle, and hip, 
respectively. To solve Eq. (26) for //', the matrix 
T (q) must be found. The unconstrained skeletal 
linkage has six degrees of freedom. However, with 
one holonomic constraint, the skeleton possesses 
five degrees of freedom, and can be described by 
the independent coordinates 0j, Oa, Oh, Xk, Yk, and 
~bk. Here, Yk is arbitrarily chosen to be the depen- 
dent coordinate. Using Eq. (12), the independent 
and dependent coordinates can be separated as 
follows: 

- I-,/k7 0 _gk + ~g~ g~J L (;k] = (27) 

In this case, the matrix T(q) has the form (Kane, 
1961): 

[ I l r  (28) 
T(q) = 0 0 -g2 0 g~ 

With the 5 •  matrix T(q) defined by Eq. 
(28), the dynamical equations of motion for the 
constrained skeletal system (Eq. (26)) can be 
integrated forwards in time to compute the 
required body segmental displacements, veloc- 
ities, and accelerations. 

3.3 Musculotendon properties and 
musculoskeletal geometry 

Parameters defining nominal muscle properties 
(i. e., maximum isometric strength and the corre- 
sponding pennation angle and length of the 
muscle fiber) for each of the eight musculoten- 
dinous units in the model were estimated from 
data reported in Wichiewicz et al. (1983). The 
linear stress-strain curve for tendon was specified 
using values of elastic moduli obtained from Woo 
et al. (1982), while cross-sectional areas were 
chosen to give a reasonable strain in tendon at 
muscle's peak isometric force. Since no experi- 
mental data exist for tendon rest length, we adjust- 
ed this parameter for each actuator in the model 
until the total isometric, active torque about each 



At, Optimal Control Model for  Determining Articular Contact Forces at the Human Knee .... 853 

joint peaked at a joint angle corresponding to in 

vivo measurements of joint torque. The musculos- 

keletal geometry of the model (musculotendon 

origin and insertion sites) was defined on the 

basis of data reported in Brand et al. (1982). 

Finally, body-segmental parameters (i. e., seg- 

ment mass and length, moment of inertia, and 

location of the center of mass of each segment) 

were scaled according to a 185 cm, 70 kg adult 

male using nominal data reported in Winter 

(1987). 

4. O p t i m a l  C o n t r o l  M o d e l i n g  

For rising from a squatting position, we chose 

to minimize the integral of normalized muscle 

stress summed over all the muscles in the model 

and integrated over the duration of the activity: 

t 8 2 

s 
JO i : 1 \  / / 

where /~-~r:, is the force in the ith musculotendon 

actuator and F~ m~ is its maximurn isometric 

strength. The constraints which govern the solu- 

tion to the optimal control problem are the equa- 

tions of motion for the constrained dynamical 

system (Eqs. (20), (2l),  and (26)), a set of 

inequality constraints which bound the magni- 

tude of each muscle excitation signal to lie 

between zero (no excitation) and one (full excita- 

tion) 

0<u ,<_ l  i = 1 ,  8 (30) 

a set of terminal equality constraints that specify 

the position of the body segments at the final 

time, li, 

q,l,, -q~s; i - -  1. 6 (31) 

and a terminal equality constraint that defines 

static equilibrium of the body at standing, 

F v ( q ,  c~, i/')l~, ~m, .g  (32) 
i - 1  

Here q is the 6•  1 vector of generalized coordi- 

nates comprising 0s, Oa, Oh, xh, y~,, and qS~,, m,- is 
the mass of the ith segment, g is the gravitational 

acceleration constant, lVv is the vertical ground 

force, and I~., indicates that each quantity is 

evaluated at the final time. Thus, the optimal 

control problem is to minimize Eq. (29) subject 

to the given initial conditions (see below), the 

dynamical equations of motion (Eqs. (20), (21), 

and (26)), a set of path constraints (Eq. (30)), 

and a set of terminal constraints (Eqs. (31) 

(32)). The optimal control problem, as for- 

mulated here, is a fixed final- time problem with 

t s - -  1 sec. 

4.1 Optimization of initial s tates  
At time t = 0 ,  the model is in a static, squatting 

position with prespecified body-segmental angles 

and zero velocities. Thus, muscles exert torques 

about the ankle, knee, and hip to maintain the 

body in static equilibrium. However, with eight 

musculotendon actuators, there is an infinite com- 

bination of forces that will generate the required 

joint torques. To determine the initial muscle 

forces in the model as well as the location of the 

tibiofemoral contact force, we solved a static 

optimization problem by minimizing the sum of 

the squares of all muscle stresses: 

8 2 
-- , /,'MT F!~la,, 

subject to six linear equality constraints (i. e., 

zero acceleration of all the body segments) and 

eight linear inequality constraints which con- 

strain the magnitude of each muscle force to lie 

within a region defined by muscle's force-length 

property (see Garner, 1992 for details). Subse- 

quent to computing muscle forces, Eq. (20) was 

used (with b'~MT--0) to iteratively solve for the 

corresponding muscle activations. 

4.2 Computation of optimal controls 
We computed the optimal control solution 

using a computational algorithm which converts 

the optimal control problem into a parameter 

optimization problem. By specifying the neural 

excitation (control) histories for all the muscles 

at discrete intervals of time (nodes)~ values of 

neural excitation at each of these nodes form a set 

of unknown variables in the resulting parameter 

optimization problern. For the purpose of inte- 

grating the dynamical equations of motion, the 

continuous excitation history lbr each muscle was 
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then reconstructed by linearly interpolating 

between the control nodes. With arbitrary initial 

guesses for the control histories u, each iteration 

of the algorithm begins with a forward integra- 

tion of the dynamical equations of motion (Eqs. 

(20). (21), and (26)) to compute the values of 

the performance index (Eqs. (29)) and the termi- 

nal constraints (equations (31)-(32)) .  First 

derivatives of each of these quantities with respect 

to the control nodes are then calculated numeri- 

cally using forward differences. This requires 

multiple forward integrations of the dynamical 

equations of motion, one for each perturbation of 

the control nodes. Finally, values of the perfor- 

mance index, the constraints, and their derivatives 

are input into a standard nonlinear programming 

routine to obtain improved estimates of the values 

of the control nodes (see Pandy et al., 1990 for 

details). 

5. Results and Discussion 

Because the optimal control solution produces 

the complete time histories of all body motions, 

ground reaction forces, and muscle activation 

patterns, the response of the model can be quanti- 

tatively compared with measurements of the same 

variables obtained from subjects performing the 

same activity as the model. In a previous study, 

we recorded kinematic (video), force-plate, and 

EMG data as four, young, healthy, adult males 

stood up from a static squatting position (age 27 

_+5 yr, height 180_+5 cm, and body mass 75_+5 

kg, Garner, 1992; Pandy et al., 1993). To see 

whether our optimal control rnodel could repro- 

duce the major features of rising from a static 

squatting position, we compared the vertical 

ground reaction force predicted by the model with 

those generated by our subjects (see Fig. 3). In 

general, there was good agreement between model 

and experiment. Both the model and the subjects 

generated peak vertical ground forces on the 

order of body weight (compare heavy and light 

solid lines). We also found qualitative agreement 

between the predicted muscle excitations and 

measured EMG for many of the muscles in the 

lower extremity (not shown; Pandy et al., 1993). 

In general, our two degree-of-freedom, 

dynamic model of the knee joint matched the 

observed sagittal-plane behavior of the knee. This 

conclusion is based on a comparison of the 

predicted location of the tibiofemoral contact 

point and the moment arms computed about the 

knee with experimental data reported in the litera- 

ture (e. g. , Nisell, 1985). For example, Fig. 4 

shows the variation in the location of" the 

tibiofemoral contact force as a function of knee 

flexion angle as the model stood up from a static 

Fig. 3 Vertical ground reaction forces generated by 
the model (heavy solid line) and subjects 
(light solid lines) for rising from a static 
squatting posilion. The ground reaction force 
for the model was obtained by solving an 
optimal control problem which minimized 
the sum of all muscle stresses squared (see 
text for details). Notice that peak ti~rces 
generated by the model and the subjects are 
near body weight. 

Fig. 4 Location of the tibiofemoral contact point 
obtained by solving a static optimization 
problem (light solid line) and an optimal 
control problem (heavy solid line) for rising 
from a static squatting position. The dashed 
line represents the location of the tibiofemor- 
al contact force measured from cadaver exper- 
iments(Nisell. 1985). Note that 100% repre- 
sents the anterior border of the tibial plateau. 



An Optimal Control Model for Determining Articular Contact Forces at the Human Knee... 855 

squat (heavy solid line). To determine the effects 

of musculotendon and muscle act ivat ion 

dynamics on model response, we also solved a 

static optimization problem to find the muscle 

forces and the location of the tibiofemoral contact 

force asing the body segmental displacements 

obtained from a solution of the optimal control 

problem (Fig. 4, light solid line). In general, the 

location of the tibiofemoral contact force found 

using static optimization was similar to that 

obtained by solving the optimal control problem 

(compare solid lines in Fig. 4). Furthermore, 

these results agree well with measurements 

obtained from cadaver experiments (Fig. 4, da- 

shed line; Nisell, 1985). 

We also used the static optimization and opti- 

mal control solutions to compute the moment arm 

Fig. 5 Moment arm of vasti at the knee plotted 
against knee flexion angle. The moment arm 
found by solving a static optimization prob- 
lem (light solid line) and an optimal control 
problem (heavy solid line) for rising from a 
static squat are nearly the same. The static 
optimization problem was solved for all the 
lower extremity muscle forces as well as the 
location of the tibiofemoral contact force 
with the body placed in several positions and 
held in static equilibrium. The dashed line 
represents the moment arm of vasti computed 
by Yamaguchi and Zajac (1989) using 
NiselFs (1985) experimental data for the 
location of the tibiofemoral contact point 
and assuming that the femur rolls on the 
tibia. The light solid line represents the 
moment arm of vasti computed using our 
planar knee model together with Nisell's 
measured location of the tibiofemoral contact 
point (see text for discussion). 

of vasti about the knee. The difference in the 

moment arm computed by these two methods was 

almost imperceptible (Fig. 5, compare light and 

heavy solid lines). These results, however, were 

significantly different from that reported by 

Yamaguchi and Zajac (1989) who based their 

moment arm calculation on Nisell's (1985) exper- 

imental data for the location of the tibiofemoral 

contact point (compare light and heavy solid 

lines with dashed line). To see whether this 

difference in the computed moment arm of vasti 

was due to a difference in the location of the 

tibiofemoral contact point predicted by our model 

and that used by Yamaguchi and Zajac (differ- 

ence between the dashed and heavy solid lines in 

Fig. 4), we recomputed the moment arm for vasti 

in our model using Nisell's experimental data for 

the location of the tibiofemoral contact point 

(light solid line in Fig. 5). We found little differ- 

ence in the computed moment arm for vasti when 

Nisell's data for the location of the tibiofemoral 

contact point were used in our model (Fig. 5, 

compare dashed and heavy solid lines with light 

solid line). The reason the momen! arm for vasti 

reported by Yamaguchi and Zajac is so different 

from that predicted by our model (as much as 2 

cm at 20-30 degrees of knee flexion) is due to 

Yamaguchi and Zajac's assumption that the 

femur rolls on the tibia. This condition has a 

significant affect on the moment arm computed at 

the knee since it means that the moment arm is 

calculated under the assumption that the instanta- 

neous axis of rotation is at the point of 

tibiofemoral contact (Yamaguchi and Zajac, 

1989). Because our model assumes that the femur 

rotates and slips on the tibia, the instantaneous 

axis of rotation lies at the center of curvature of 

the femoral condyles, which alters the moment 

arm for vasti significantly. 

Using the muscle forces obtained from the 

static optimization and optimal control solutions, 

we also calculated the total contact force at the 

tibiofemoral joint during rising from a static 

squat (Fig. 6). The tibiofemoral contact force 

obtained by static optimization was much lower 

than that predicted by the optimal control solu- 

tion (compare magnitude of forces in Fig. 6(a) 
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(a) Static model 
(a) Static rnodel 

Fig. 6 
(b) Dynamic model 

Tibiofemoral contact force found by solving 
a static optimization problem (a) and an 
optimal control problem (b) Ik)r rising from 
a squatting position. The total tibiofemoral 
load is the sum o[ the contributions made by 
gravity and inertia (heavy shaded region), 
ligament (unshaded region), and muscle 
(light shaded region). Notice that muscle's 
contribution dominates the total ti)rce exerted 
at the tibiofemoral joint. Notice also that the 
optimal control solution yields much larger 
tibiofemoral loads (8 times body weight) 
than those predicted using static optimization 
(5 times body weight). 

(b)).  Peak contact fi)rce at the tibiofemoral joint 

computed using static optimization was about 5 

times body weight (Fig. 6(a)) ,  whereas the opti- 

mal control solution predicted loads as high as 8 

times body weight (Fig. 6(b)) .  In both cases, 

however, peak forces at the tibiofelnoral joint 

occurred with the body in the initial deep squat- 

ting position. We also computed the contributions 

from gravity, inertia, ligament, and muscle to the 

Fig. 7 
(b) Dynamic model 

Forces exerted by the anterior cruciate liga- 
ment (A('L), posterior cruciate ligament 
(PCL), lateral collateral ligament (LCL), 
and medial-collateral ligament (MCL) in 
our model found by solving a static optimiza- 
tion problem (a) and an optimal control 
problem (b) for rising from a squatting 
position. In general, the ACL takes a large 
portion o[ the total load shared by all the 
ligaments in the model. 

total tibiofemoral contact force (Fig. 6). Not 

surprisingly, muscle dominates the total load 

exerted at the tibiofemoral joint (Fig. 6, compare 

light shaded regions with total). The contribution 

from all the ligaments, however, was not insignifi- 

cant. Both the static optimization and optimal 

control solutions gave ligament forces that were 

about 30 percent of the total contact force (Fig. 6, 

compare light unshaded regions with total), 

whereas gravity and inertia contributed less than 

10 percent to the total load (Fig. 6, compare 

heavy shaded regions with total). The static 

optimization and optimal control solutions 
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produced significantly different tibiofemoral con- 

tact loads for rising from a static squat because 

the muscle forces predicted by these two methods 

were very different. Any difference in the muscle 

forces predicted by static optimization and opti- 

mal control is a measure of the effect that mus- 

culotendon dynamics has on the time history of 

muscle force. Although the tibiofemoral contact 

force predicted by our optimal control model is 

somewhat higher than that reported by others 

(Cheng, 1988; Collins and O'Connor,  199t; 

Fijan, 1990), our calculation was based on the 

assumption that point contact exists between the 

femur and tibia in the sagittal plane. Because 

tibiofemoral contact usually occurs in both the 

medial and lateral sides of the joint, forces trans- 

mitted at the knee in vivo are likely to be lower 

than those predicted by our planar model. Since 

the oplimal control solution for standing up 

accounts for musculotendon dynamics and muscle 

excitation contraction dynamics, we believe that 

the muscle, ligament, and tibiofemoral contact 

forces predicted by our model are more indicative 

of the actual loads transmitted at the knee during 

movement. 

Finally, the forces exerted by each of the 

cruciate and collateral ligaments during rising 

from a static squat are shown in F'ig. 7. We found 

general agreement between the ligament forces 

calculated using static optimization and our opti- 

mal control model. The anterior--cruciate liga- 

ment (ACL) took most of the load exerted by all 

the ligaments, with peak forces being as high as 

80 percent body weight (Fig. 7, ACL). The 

optimal control solution predicted peak forces in 

the posterior-cruciate ligament (PCL) which 

were comparable to those exerted by the ACL, 

but the PC[, took most of its load only when knee 

flexion exceeded 90 degrees (Fig. 7 (b), compare 

ACL and PCL in the squatting position). The 

collateral ligaments exerted forces that were sig- 

nificantly lower than those in either the ACL or 

the PCL, a result which we suspect is an artifact 

of modeling the knee in the sagittal plane. 
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